
Excel and Python TVM
Nick DeRobertis

June 9, 2021

Overview
The Problem
You work for a new startup that is trying to manufacture phones. You are tasked with building a model which will
help determine how many machines to invest in and how much to spend on marketing. Each machine produces
noutput phones per year. Each phone sells for $pphone and costs $cphone in variable costs to produce. After nlife

years, the machine can no longer produce output, but may be scrapped for $pscrap. The machine will not be
replaced, so you may end up with zero total output before your model time period ends. Equity investment is
limited, so in each year you can spend cmachine to either buy a machine or buy advertisements. In the first year you
must buy a machine. Any other machine purchases must be made one after another (advertising can only begin
after machine buying is done). Demand for your phones starts at d1. Each time you advertise, demand increases
by gd%. The prevailing market interest rate is r.

Notes
• You may limit your model to 20 years and a maximum of 5 machines if it is helpful.

• For simplicity, assume that cmachine is paid in every year, even after all machines have shut down.

• Ensure that you can change the inputs and the outputs change as expected.

• For simplicity, assume that fractional phones can be sold, you do not need to round the quantity transacted.

The Model
Inputs

• noutput: Number of phones per machine per year

• nmachines: Number of machines purchased

• nlife: Number of years for which the machine produces phones

• pphone: Price per phone

• pscrap: Scrap value of machine

• cmachine: Price per machine or advertising year

• cphone: Variable cost per phone

• d1: Quantity of phones demanded in the first year

• gd: Percentage growth in demand for each advertisement

• r: Interest rate earned on investments

1

Outputs

• Cash flows in each year, up to 20 years

• PV of cash flows, years 1 - 20

Bonus Problem
It is unrealistic to assume that price and demand are unrelated. To extend the model, we can introduce a relationship
between price and demand, given by the following equation:

d1 = dc − Epphone (1)

• E: Price elasticity of demand

• dc: Demand constant

For elasticities and constants [(E = 500, dc = 900000), (E = 200, dc = 500000), (E = 100, dc = 300000)] (3 total
cases), and taking the other model inputs in the Check your Work section, determine the optimal price for each
elasticity, that is the price which maximizes the NPV.

Notes

• d1 is no longer an input, but an output.

• This bonus requires optimization, which we have not yet covered in class.

• In Excel, you can use Solver.

• In Python, the scipy package provides optimization tools. You will probably want to use:

– scipy.optimize.minimize_scalar

– You will need to write a function which accepts price and returns NPV, with other model inputs fixed.
∗ Depending on how you set this up, functools.partial may be helpful for this.

– It will actually need to return negative NPV, as the optimizer only minimizes, but we want maximum
NPV.

– No answers to check your work are given for this bonus. The Check your Work section only applies to
without the bonus.

Excel Exercise
You must start from "Project 1 Template.xlsx". Ensure that you reference all inputs from the Inputs/Outputs tab.
Also ensure that all outputs are referenced back to the Inputs/Outputs tab. Do not change any locations of the
inputs or outputs. The final submission is your Excel workbook.

Python Exercise
You must start from "Project 1 Template.ipynb". I should be able to run all the cells and get the output of your
model at the bottom. You should not change the name of the ModelInputs class or the model_data variable. You
need to define cash_flows as your output cash flows (numbers, not formatted), and npv as your NPV (number,
not formatted). When you show your final outputs in the notebook, then they should be formatted.

Page 2 of 3

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html#scipy-optimize-minimize-scalar
https://www.learnpython.org/en/Partial_functions

Grading
Grading Breakdown

Category Percentage
Model Accuracy 60%
Model Readability 20%
Model Formatting 10%
Following the Template 10%
Bonus 5%
Total Possible 105%

Check your Work
If you pass the following inputs (to the basic model, not bonus model):

• noutput: 100,000

• pscrap: $50,000

• pphone: $500

• cmachine: $1,000,000

• cphone: $250

• nlife: 10

• nmachines: 5

• d1: 100,000

• gd: 20%

• r: 5%
You should get the following result:

Cash Flows:
Year 1: $24,000,000
Year 2: $24,000,000
Year 3: $24,000,000
Year 4: $24,000,000
Year 5: $24,000,000
Year 6: $29,000,000
Year 7: $35,000,000
Year 8: $42,200,000
Year 9: $50,840,000
Year 10: $61,208,000
Year 11: $73,699,600
Year 12: $74,050,000
Year 13: $49,050,000
Year 14: $24,050,000
Year 15: $-950,000
Year 16: $-1,000,000
Year 17: $-1,000,000
Year 18: $-1,000,000
Year 19: $-1,000,000
Year 20: $-1,000,000
NPV: $369,276,542

Page 3 of 3

	Overview
	The Problem
	Notes
	The Model
	Inputs
	Outputs

	Bonus Problem
	Notes

	Excel Exercise
	Python Exercise
	Grading
	Check your Work

